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J. Phys. A : Gen. Phys., Vol. 5 ,  June 1972. Printed in Great Britain 

A note on energy extremal properties for rotating stars 
in general relativity 

J KATZ 
The Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem, Israel 

MS received 14 December 1971 

Abstract. Using Komar’s localized energy and spin conserved vectors associated with the 
Killing fields of a stationary axisymmetric universe, we derive a covariant identity which 
describes in terms of variations of fields and matter functions a perfect fluid in general 
relativity, exhibiting in a clear and straightforward way a variety of known extrema1 theorems, 
or analogous ones, for energy or entropy. 

1. Introduction 

Thorne and Wheeler (1965) established the following energy extremal theorem : ‘Among 
all momentarily static and spherically symmetric configurations of cold catalysed matter 
which contain a specified number of baryons, that configuration which extremizes the 
mass as sensed from outside satisfies the TOV general relativity equations of hydrostatic 
equilibrium’ (Harrison et al 1965). Cocke (1965) obtained similar results in terms of an 
entropy extremal which represents, though it is not evident at first sight, a more precise 
formulation of the Tolman-Ehrenfest (1930) thermal equilibrium conditions. In any 
case the ‘constraints’ (Dirac 1958) or initial value equations are the source of all the 
information. 

Analogous but not completely equivalent properties have been established for a 
stationary axisymmetric distribution of a perfect fluid by Boyer and Lindquist (1966), 
Hartle and Sharp (1967) and in a more complete sense by Bardeen (1970). In these 
variational or extremal principles there is a great difference in the treatment of on the 
one hand quantities like baryon number, entropy, internal energy and volume (as mea- 
sured in locally comoving frames) which are all associated with locally conserved vector 
densities and on the other energy and spin for which, as is well known (Mdler 1958), 
there are troubles of localization in general relativity. 

For static or stationary axisymmetric universes in which well defined Killing fields 
exist everywhere, energy and spin may be to some extent localized ; in other words 
(Komar 1959), conserved energy and spin vector densities also exist. In view of this, 
we shall show that there exists an identity, relating the variation of the relevant conserved 
vector densities, which expresses in a direct and covariant way the results derived from a 
variational principle. We shall first give a very brief description of the mathematical 
background ; results will be followed by some comments on the various applications 
which have been made. 
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2. Mathematical treatment 

Given a Riemannian manifold in general relativity (Lichnerowicz 1955) with two Killing 
fields, a timelike one t’.(E,, p, \’, p, G = 0, 1,2,3) and a spacelike one y’-, there exists a 
family of ‘cylindrical coordinates’ (x’j = ( t ,  4, p,  z )  in which ti = 6;  and = 6:. 
We suppose that in these frames, the metric gPy dx” dx’ is invariant for (t ,  4)  -+ ( -  t ,  - 4). 
so that go, = go, = 0 (the condition may be somewhat weakened). We suppose also 
that coordinates may be chosen so that gpy tends to the Minkowski metric at spatial 
infinity ( r 2  = p2 + z 2  -+ 5; for fixed t )  in the following way (Papapetrou 1948): 

goo = 1 + ( ~ / 2 m ) + O ( r - ~ )  (IJ 

p k  = +d:J(p/4nr3)+O(r-3) 

g k i  = - d k ‘ +  qr- 2 )  (k .  1. ??I, I1 = 1, 2 ,  3 )  

where M and J are the geometrical mass and spin of an isolated perfect fluid (see below) : 
the symbol on gPv (or on any other defined symbol) indicates multiplication by the 
square root of - det(g,,). 

A perfect fluid is described by a set of geometrical quantities, zero outside an assumed 
connected finite region, and whose Lie derivatives in the direction of the Killing fields 
are zero (a symmetry condition). The matter tensor is 

( 2 )  

where o is the internal energy density function, p is the local pressure, and the velocity 
field U’. is taken to be normalized, ui’ui = 1. The symmetry condition implies that 
U’. is in the plane of t’, and vi; thus scalar functions [, !2 exist such that 

( 3 )  
in cylindrical coordinates, < = lid’ and !2 = u’ iu”  = d4idt is the angular velocity. 
A scalar entropy function s is also assumed to exist and s = s(a, n)  where n is the baryon 
number density function ; first-order derivatives define the local temperature E )  and the 
local pressure (equation of state) in the following combination : 

(4) 

Consider now a space-like hypersurface C extending to infinity, dC, being the local 
surface element. The Komar (1959) energy and spin forms are defined respectively by 

TPs = (0 + p)u@u” -pg”‘ 

. - .  
L’” E tu’. = <” + Qy/- 

8 d(sjn) = d( gin) + p d( 1 in). 

where Vi. represents a covariant derivative relative to x’., and d, an ordinary derivation. 
.A/ and j have zero exterior differentials and their integrals are C-independent numbers, 
which because of (1) are equal to M and J respectively. 

With U’ one may define a volume element 3 -  as measured in locally comoving frames, 
f . E ii’dx,, and with it an internal energy form 6 3 d’, an entropy form Y s Y -  
and a baryon number form ..t^ n V .  Their integrals are C-independent numbers 
called, respectively, the volume V, the internal energy E ,  the entropy S and the baryon 
number N .  

Consider a small change in the metric 6gpy and in the independent matter functions 
60, 6n and 6 0  with the restrictions that the symmetry is preserved 65’. = 6~‘ = 0, 
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coordinates are unchanged 6xA = 0 and U' remains normalized. Variations of the forms 
are easily calculated as are those of the tensor LP" defined as follows, with the Ricci 
curvature RPv and its trace R : 

L P V  (7) RPV -1 PVR- T P V  2g 

(Uv = 0 are of course Einstein's equations). Moreover, with a definite value for iW, 
(4), written in terms of forms, becomes 

e6y+ ,Uo6J l r  = 6 g + p w  (8) 
where ,U' = (cr+p-Os)/n is the chemical potential (rest mass included). Now, times 
the second member of (8) may be expressed in terms of dud, 6 2  and 6LPv and in fact, 
using (1) to (7), it may be shown after some simple but lengthy algebraic manipulations 
that (8) is equivalent to what follows in which T = and ,U = l p o  : 

6A - (0 6% + T 6 9  + p SN) = 9 + (0' 6Lc + $ALuv6gPv) dC, 

9 = 36A +~Pv(6RpV)v" dC,). 

(9) 

(10) 
with 

Interpretation will be easier in cylindrical coordinates and on the hypersurface t = 0 
for which dC, = 6: d3x and n, ; 6:(goo)- ' I 2  = 6:~. Then, the independent constraints 
are XL = @''E = 0 and X4 Ly = 0, while the dynamical equations are 2,' = 0, and 
they are derivable from an Hamiltonian H which is as follows (with w = go'/goo): 

H = Jx 2 = dC,  = L: d3x = ( X L ~ - X 4 w )  d3x. (11) 

Now defining a form 

f *  2+qv2:dCA = f + 2 , d 3 x  

whose integral J* is equal to J when X4. = 0, and noting that $3 is a spatial divergence 
which because of (1) is asymptotically like O(r-4), we may write the integral of both 
members of (9) as follows, using (1 1) and (1 2) : 

6.M -i=, (Q 6 2 *  + T 6 9  +,U 6 M )  

= (c 6 X L - 0 6 ~ 4 + ~ L ~ , 6 q k ' ) d 3 x  
r = O  

where qk' = gk' - nkn' is the reciprocal matrix of g,, . Formula (9) or (1 3) is just a variational 
identity which contains the mentioned extremal theorems or closely analogous ones 
as we shall now briefly point out. In fact, from (9, (7) and (11) we note that 

d 'A-% 2 = <"(Pc++6;R)dCA = (P,0+$R)d3x. (14) 

d, up to a divergence, is the integrand of the energy integral obtained from the Noether 
theorem for standard Lagrangians. Variational considerations have been applied to the 
integral of d hereafter denoted A. When applying the variational principle, boundary 
value variations of the field components are equated to zero; thus (See equation (1)) 
6M = 6 J  = 0. In these conditions, and using (14), (13) reduces to 
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Consider now for instance isentropic variations 6 Y  = 0, with fixed ‘spin’ (6J* = 0) 
and fixed baryon number (6N = 0). With these restrictions, the following relation 
should be satisfied when applying the variational principle to A : 

where a and j are numbers (Lagrange multipliers). We may ask equivalently that (16) 
be true with 6A replaced by the identical expression given in (15); then 

Our 13 independent variables have 12 independent combinations of variations (since 
6 9  = 0); in particular a#*, 6,Y and 6gp’ are independent. From this it follows that 
for isentropic variations with fixed spin and baryon number, A will be extremum 
( 6 A  = 0) if and only if the angular velocity R and the chemical potential times are 
constants and if Einstein’s equations Lp, = 0 are satisfied. Note that under these 
conditions (see equation (14)) A = M / 2 ,  and 6A = 0 will represent an energy extremum 
if the variations of the variables are restricted to satisfy the variational equations 
S.XL = = 0. Formula (9) or (13) appears as a direct expression of such an extremal 
energy property. 

3. Comments 

In connection with (9) and (13), we shall now add a few remarks regarding known results. 
(i) If in (9) 22 is replaced by any divergence whose asymptotic behaviour is like O(F4) ,  
thus losing the equality sign, the integral form (13), however, remains valid. In this way 
M ,  which in (5) is given by the asymptotic value of goo, may be obtained in terms of the 
asymptotic value of a spatial component of the metric. This establishes the connection 
with Bardeen’s (1970) result. Note, however, that this can only be done at the expense 
of a covariant formulation. (ii) Thorne (1967) observed that Hartle and Sharp’s results 
are valid for arbitrary variations of the variables. This is true in so far as their results are 
regarded as coming from an action principle and not as extremizing the mass. However. 
both are trivially connected as we saw in (14) and the connection is, in fact, implicitly 
made by Hartle and Sharp. (iii) Cocke’s (1964) entropy extremum theorem for static 
spherically symmetric stars is based on a redundant set of conditions on the variations 
of the variables. In fact, as can be seen from (9), one can obtain all of his statements 
without imposing a@: = 0. (iv) The Tolman-Ehrenfest (1930) thermal equilibrium 
conditions are incomplete ; they are valid for any variations of the variables restricted 
by 62‘ = S,yi+ = 0, as can be seen in (13). (v) An action principle may be applied, in 
the manner of Boyer and Lindquist (1966), to an integral of .A!’ expressed in terms of 
matter functions as if not only were the constraints satisfied a priori but also Lklqkf = 0. 
In this way an analogous energy extremal theorem may be formulated if in addition to 
a&?‘ = = 0 we restrict the variations also to fulfil G(Lklqk’) = 0, a mixture of 
constraints and dynamical equations. 
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